Volume 3, Issue 2, April 2017, Page: 38-42
Gravitational Force Explanation Based on Universe as a Superconductor of Matter
Sergio P. F., Sergio Pérez Felipe, Independent Researcher, Graduated from Computer Science, Madrid, Spain
Received: Dec. 14, 2016;       Accepted: Mar. 1, 2017;       Published: Mar. 30, 2017
DOI: 10.11648/j.ijamtp.20170302.13      View  1683      Downloads  116
Gravity explained by a new theory, ‘Superconducting String Theory’, inspired on initial string theories and completely opposite from actual fields based. Strengths are decomposed to make strings behave as one-dimensional with universe acting as a superconductor where resistance is near 0 and matter moves inside. Strong nuclear force, with an attraction of 10.000 Newtons is which makes space to curve, generating acceleration. More matter more acceleration. Electromagnetic moves in 8 decimals, gravity is moved from 3 to more than 30 decimals to work as a superconductor.
Gravity, Unified Field Theory, Dark Matter, Relativity, Strong Nuclear Force, Gluon, String Theory
To cite this article
Sergio P. F., Gravitational Force Explanation Based on Universe as a Superconductor of Matter, International Journal of Applied Mathematics and Theoretical Physics. Vol. 3, No. 2, 2017, pp. 38-42. doi: 10.11648/j.ijamtp.20170302.13
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Joseph Conlon (2015). Why String Theory?. CRC Press. ISBN 978-1-4822-4247-8. http://dx.doi.org/10.1063/PT.3.3201.
Henning Genz (1999). Nothingness The Science of Empty Space. Addison-Wesley. ISBN 978-0201442335.
Bechler, Z. (2012). Newton’s Physics and the Conceptual Structure of the Scientific Revolution. Springer Science & Business Media. http://dx.doi.org/10.1007/978-94-011-3276-3.
Gould, P. H. (2013). Introduction to Linear Elasticity. http://dx.doi.org/10.1007/978-1-4614-4833-4.
Cannon, J. T., & Dostrovsky, S. (1975). The Evolution of Dynamics: Vibration Theory from 1687 to 1742. http://dx.doi.org/10.1007/978-1-4613-9461-7.
F. Yndurain (1995). Limits on the mass of the gluon. Physics Letters B. 345 (4): 524. http://dx.doi.org/10.1016/0370-2693(94)01677-5.
Williams, A. G., Bonnet, F. D., Bowman, P. O., Leinweber, D. B., Skullerud, J. I., & Zanotti, J. M. (2002). The Transition from Nonperturbative to Perturbative QCD. In Non-Perturbative QCD (pp. 189-196). http://dx.doi.org/10.1142/9789812778352_0026.
J. Li, H. Y. Guo, B. N. Wan, X. Z. Gong, Y. F. Liang, G. S. Xu, K. F. Gan, J. S. Hu, H. Q. Wang, L. Wang, L. Zeng, Y. P. Zhao, P. Denner, G. L. Jackson, A. Loarte, R. Maingi, J. E. Menard, M. Rack & X. L. Zou. A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak. Nature Physics 9, 817–821 (2013). http://dx.doi.org/10.1038/nphys2795.
Andreas S. Kronfeld & Chris Quigg (2010). Resource Letter QCD-1: Quantum chromodynamics. http://dx.doi.org/10.1119/1.3454865.
Wang, ZY. Plasmonics (2016) 11: 503. Modern Theory for Electromagnetic Metamaterials. http://dx.doi.org/10.1007/s11468-015-0071-7.
Browse journals by subject