Volume 2, Issue 2, April 2016, Page: 16-20
Heavy Quarkonia and  Mesons in the Cornell Potential with Harmonic Oscillator Potential in the N-dimensional Schrödinger Equation
M. Abu-Shady, Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
Received: Jul. 15, 2016;       Accepted: Jul. 27, 2016;       Published: Aug. 30, 2016
DOI: 10.11648/j.ijamtp.20160202.11      View  3224      Downloads  108
Abstract
Heavy quarkonia,  meson, and  -meson masses are calculated within the framework of the N-dimensional radial Schrödinger equation. The Cornell potential is extended by including the harmonic oscillator potential. The energy eigenvalues and the corresponding wave functions are calculated in the N-dimensional space using the Nikiforov-Uvarov (NV) method. The energy eigenvalues are obtained in the three-dimensional space. The mass of spectra of charmonium, bottomonium, , and  mesons are calculated. The effect of dimensionality number on the mass of quarkonium is investigated. A comparison with other theoretical approaches is discussed. The obtained results are in good agreement with experimental data. We conclude that the dimensionality number plays an important role in studying the spectra of quarkonium masses. The modified Cornell potential provides a good description of the spectra of quarkonium masses.
Keywords
Heavy Quarkonia, Quarkonium States, Cornell Potential
To cite this article
M. Abu-Shady, Heavy Quarkonia and  Mesons in the Cornell Potential with Harmonic Oscillator Potential in the N-dimensional Schrödinger Equation, International Journal of Applied Mathematics and Theoretical Physics. Vol. 2, No. 2, 2016, pp. 16-20. doi: 10.11648/j.ijamtp.20160202.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
S. M. Kuchin and N. V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013).
[2]
R. Kumar and F. Chand, Commun. Theor. Phys. 59, 528 (2013).
[3]
A. Al-Jamel and H. Widyan, Appl. Phys. Rese. 4, 94 (2013).
[4]
H. Ciftci, R. Hall, and N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003).
[5]
Af. Nikiforov Uvarov, "Special Functions of Mathematical Physics" Birkhauser, Basel (1988).
[6]
H. S. Chung and J. Lee, J. Kore. Phys. Soci. 52, 1151 (2008).
[7]
N. V. Masksimenko and S. M. Kuchin, Russ. Phy. J. 54, 57 (2011).
[8]
Z. Ghalenovi, A. A. Rajabi, S. Qin and H. Rischke, hep-ph/14034582 (2014).
[9]
S. M. Ikhdair, quant-ph/11100340 (2011).
[10]
B. J. Vigo-Aguir and T. E. Simos, Int. J. Quantum Chem. 103, 278 (2005).
[11]
P. Gupta and I. Mechrotra, J. Mod. Phys. 3, 1530 (2012).
[12]
R. Kumar and F. Chand, Phys. Scr. 85, 055008 (2012).
[13]
J. Beringer et al. [particle Data Group], Phys. Rev. D 86, 1 (2012).
[14]
A. Kumar Ray and P. C. Vinodkumar, Pramana J. Phys. 66, 958 (2006).
[15]
E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994).
[16]
D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003).
[17]
L. I. Abou-Salem, Inter. J. Mod. Phys. A 20, 4113 (2005).
[18]
Particle Data Group, Phys. Rev. D 54, 1 (1996).
[19]
S. Godfrey and K. Moats, hep-ph/14090874 (2014).
Browse journals by subject